
Informed Multi-Representation Multi-Heuristic A*

Abstract— Generating motion plans for robots, like hu-
manoids, with many degrees of freedom is a challenging
problem because of the high-dimensionality of the resulting
search space. To circumvent this, many researchers have made
the observation that large parts of the solution plan are often
much lower dimensional in nature. Some recent algorithms
exploit this by either planning on a graph with adaptive
dimensionality or leveraging a decoupling in the robot’s action
space. Often, it is possible to gain more fine-grained information
about the local dimensionality of the plan from any robot state
to the goal which can then be used to inform search. In this
work, we present a heuristic-search-based planning algorithm
that admits such information as a prior in the form of lower
dimensional manifolds (called representations) and a proba-
bilistic mapping (conditioned on the world and the goal) from
robot states to these representations. We train a Conditioned
Variational Autoencoder (CVAE) for every representation and
use them to compute the required probabilitic mapping. Us-
ing this additional domain knowledge, our motion planner
is able to generate high quality bounded-suboptimal plans.
Experimentally, we validate the practicability and efficiency of
our approach on the challenging 10 degree-of-freedom mobile
manipulation domain.

I. INTRODUCTION

We propose to implement a learning-based planning
method that utilizes successful plans generated from expen-
sive sources during training time (such as time-consuming
planners or humans in given environments), in order to
better inform search during test time in unseen environments.
[1] presents an approach that uses conditional variational
autoencoders over states along available plans and learns
a distribution that captures the validity/desirability of states
conditioned on the environment map, start and goal. This
distribution is used to bias samples for sampling-based
planning algorithms and guide their search in a more in-
formed direction, for example, expert plans through narrow
passageways or trajectories that avoid obstacles. In our work
we explore the idea of controlling expansions made by
the Multi-Representation Multi-Heuristic A* (MR-MHA*)
algorithm [2]. MR-MHA* is a variant of MHA* in which
each queue focuses on only a small set of dimensions (called
a representation). We will make use of the model proposed
in [1] to learn a distribution over different representations so
as to better schedule expansions from the queues.

II. RELATED WORK

The idea of dividing a robotic system into kinematic
subsystems has been used extensively in motion planning
for humanoids. [3] uses an RRT-based planner to plan for a
43 dof humanoid robot. Planning is initially attempted using
a small subsystem of the robot. Additional dof are adaptively
added based on the distance of the end-effector of the robot
to the goal or if planning using a smaller subsystem of the
robot failed. Further, every collision situation corresponds to
a fixed lower dimensional representation of the robot. [4]

uses a similar idea of using the RRT planner in an adaptively
dimensional C-space by adaptively selecting joints based on
the distance of the corresponding link from the goal and
obstacles.

In the heuristic-search community, a host of algorithms
targeted at graphs with large branching factors have been
developed. Adaptive Dimensionality proposed in [5] main-
tains two kinds of state-spaces- a high dimensional space Shd

and a lower-dimensional space Sld that is a projection of Shd

onto a lower dimensional manifold. The planner then seeks
to plan in Sld as much as possible and expand the search
into Shd only if it is necessary to ensure the feasibility of the
resulting path. Enhanced Partial Expansion A* [6] seeks to
improve planning time by doing only partial expansions of
nodes. Given some domain and heuristic-specific knowledge,
it brings down the effective branching factor of the graph by
generating only some successors of a vertex.

III. METHODOLOGY

A. Planning Formulation

Our problem formulation consists of a robot (R) that
has a total of 10 degrees of freedom. The arm consists of
7 degrees [RA = (θ1, ..., θ7)] while the base consists of 3
degrees [RB = (x, y, φ)]. The robot is tasked with navigation
and manipulation in a given 3D environment that consists
of narrow passages in the forms of gaps between walls
(ENV = [(x1, y1), ..., (xn, yn)]). The environment may or
may not consist tables with objects present on them. The
start state of the robot in this environment corresponds to its
current base location and configuration of the arm’s joint
angles (Rstart =< RA, RB >). The goal state of the
robot is the position and rotation of the arm’s end effec-
tor (Rgoal =< REx, REy, REz, REroll, REpitch, REyaw >).
The vanilla MR-MHA* algorithm [2] finds a path from
Rstart to Rgoal. However as opposed to MHA* which would
expand the full 10 dimensional robot state, MR-MHA*
expands either RA or RB . In our implementation, to further
speed up the search, we try to inform the selection of which
dimension to expand based on where in the environment the
search is at a given point.

B. CVAE Architecture

Our architecture is inspired from the work in [1] and
resembles the standard CVAE architecture that is used in
literature. As shown in Figure 1(a), it consists of an encoder
that takes a training sample and conditioning variable as
input. The encoder consists of 3 fully connected layers with
400 neurons each. The samples are encoded into a latent
distribution represented by vectors µ(x, y),Σ(x, y), each of
dimension 3. The vectors are then concatenated with noise
sampled from N(0, 1) and passed into the decoder which
again has 3 layers of size 400 each. The reconstructed output



(a) (b)

Fig. 1: (a) CVAE Training (b) CVAE Testing [1]

Fig. 2: Top views of 2 Randomly generated map variants
used for testing of CVAE and MR-MHA* pipeline (lines are
walls in 3Ds and squares are tables)

from the decoder and µ(x, y),Σ(x, y) from the encoder are
combined into the following loss function :

L = ‖x− f(z, y)‖2 +DKL(N (µ(x, y),Σ(x, y))‖N (0, I))
(1)

As noted earlier, for informing MR-MHA* using the knowl-
edge of the environment, we want to predict environment
locations where base should be expanded during search and
where arm should be expanded. For this purpose we train
two CVAEs, one for predicting locations where base should
be used and another for predicting where arm dimension
should be used. The input to either CVAE for training is
the (x,y) location of the robot’s base concatenated with the
conditioning variable which in our case is the concatenation
of : the (x,y) location of robot’s base in Rstart, the (x,y)
location of the robot’s base in Rgoal, the (x,y) location of
all the narrow gaps in the map.

C. CVAE Training

Data Generation We require that the trained CVAE
model is able to generalise to different start/goal pairs and
different environments where positions of narrow gaps and
obstacles change. Thus we developed a methodology to
generate random maps with certain given specifications such
as maximum number of gaps, height of the tables, width of
the narrow gaps etc. A total of 20 maps were generated and
3 out of those were used for testing (as shown in Figure 2).
The test maps were not shown to the network during training
phase. After generating the maps, the next step was to
generate random collision free start/goal pairs for each map
which could then be used by vanilla MR-MHA* to generate
trajectories and data for the CVAEs. We generated 500
start/goal pairs for each map by sampling random locations.
For maps that contain tables, the goal was sampled to a

location above each table, as would be required in a planning
for manipulation task. The combination of generated maps
and start/goal pairs requires the robot to traverse the map, go
through narrow passages and finally position and orient its
end-effector at the required goal location. Due to the complex
nature of this task, the final generated trajectories contain
expansions in arm as well as base dimension and all the
trajectory data together serves as an input for training the
two CVAEs. Observation of training also revealed, that the
final plan does include arm expansions near the narrow gaps
(where the robot may have to move its arm to get through
the door) and near the goal where a table may or may not
be located. Thus, if the CVAEs are trained to generate this
data, they can be used during test time to inform MR-MHA*
as described in the next section.

D. CVAE Testing

Running CVAE The first step to test the planner with
incorporated CVAE output is to get predictions from the
CVAE. For this purpose, the start/goal pair from the planning
query and the narrow gap locations in the environment are
concatenated together into the conditioning variable. This
condition along with noise sampled from N(0,1) is passed
into the trained decoder models of arm and base CVAE to
(x,y) locations on the map where arm and base should be
expanded (as shown in Figure 1(b)). Figure 3(left) shows
samples generated by arm and base decoders for a given
map and start/goal locations. As we can see that the CVAE
has been well conditioned on the gaps and start/goal pairs,
generating samples going though the gaps in an unseen test
environment. In addition the arm CVAE output in Figure
3(a) shows high point density near the narrow gaps, start and
goal, indicating a greater likelihood for arm use near these, a
behaviour exhibited by our training planner on environments
such as these. The base CVAE output in 3(b) on the other
hand is more uniform and spread throughout the path. For
our purposes, we generate a set of 1000 samples every time.

Computing Expansion Probabilities Once the CVAE
outputs have been obtained, it is required to convert the
information into probabilities in a way that for a given (x,y)
the probability indicates which dimension should be more
likely to be expanded. For this purpose, we utilise a nearest
neighbour search in both CVAE outputs. More specifically,
each CVAE output is stored as a KD-Tree (Tarm and Tbase).
Now for a given (x,y) in the map, we search both KD-Trees
in a pre-specified radius (for out tests this was set to 0.5m)
and calculated the probabilities as follows :

Parm(x, y) =
N(Tarm)

N(Tarm) +N(Tbase)
(2)

Pbase(x, y) =
N(Tbase)

N(Tarm) +N(Tbase)
(3)

Here N(Tarm) and N(Tbase) denote the number of nearest
neighbours found in the arm and base KD-Trees respectively
in the pre-specified radius. This is shown in Figure 3 for an
environment and start/goal pair. As we can see in the plots
of P(arm) and P(base), P(arm) is higher nearer the narrow



Fig. 3: Probabilities of expanding arm or base (along the
base CVAE points) obtained by using nearest neighbours on
CVAE outputs

gaps and near the table at the goal while P(base) is higher
in the remaining trajectory paths.

Running MR-MHA* The last step in our algorithm is
incorporating the computed expansion probabilities into MR-
MHA*. The original algorithm is designed to handle queues
corresponding to multiple heuristics. The state at the top of
the queues (state with min f-value) is picked for expansion in
a round-robin fashion. We modify this round-robin iteration
to a discrete sampling based queue selection. As shown
in Figure 4, the probability of each queue depends on its
existing label (arm or base) and the probability of expansion
of the state at the top for that label. Thus for Q1 in Figure
4, p(x1) will correspond to the probability Px1

(arm) while
for Q′

1, p(x′1) will correspond to Px′
1
(base) and so on for

other queues. These probabilities are combined to create a
discrete probability distribution Qt from which a queue is
then sampled to be expanded. Intuitively, we can see that
this approach will automatically expand more in the arm
dimension if the min f-value states in the queues have a
higher P (arm) and expand more in the base dimension if
the min f-value states in the queues have a higher P (base).

Fig. 4: MR-MHA* heuristic queues with expansion proba-
bilities

IV. EXPERIMENTS

In order to evaluate our CVAE and planner pipeline, we
tested on 3 environments similar to ones shown in Figure 2,
running the planner over 300 times in total. Environment 1
and 3 had tables while 2 did not. A comparison of the original
planner and the informed one we have developed can be seen
in Table I and in the YouTube video. From the results, across
the 3 environments we get an average runtime improvement

Algorithm 1 Informed MR-MHA* with m representations
and n inadmissible heuristics.

1: procedure CHOOSEQUEUE
2: for i ∈ {1, ..., n} do
3: r ← REPID(i)
4: s← OPENi.TOP()
5: Q← Pr(s)

return i ∼ Q
6: procedure INFORMED MR-MHA*(m,n)
7: g(sstart)← 0, g(sgoal)←∞
8: OPEN0 ← φ , CLOSED0 ← φ . Anchor
9: OPENi ← φ for i← 1, . . . , n . Inadmissible

10: CLOSEDi ← φ for i← 1, . . . ,m . Inadmissible
11: for i← 0, . . . , n do
12: Insert sstart into OPENi with KEY(sstart, i)

13: while g(sgoal) > w2 · OPEN0.MINKEY() do
14: i← CHOOSEQUEUE()
15: if OPENi.MINKEY() ≤ w2 · OPEN0.MINKEY()

then
16: s← OPENi.TOP()
17: EXPAND(s, i)
18: for j ← 1, ...,m do
19: if REP(j) ⊆ REP(REPID(i)) then
20: Insert s in CLOSEDj

21: else
22: s← OPEN0.TOP()
23: EXPAND(s, 0)
24: Insert s in CLOSED0

TABLE I: Mean Reductions with 3 environments

Environment Number
of Expansions

Runtime
(in seconds)

Success
Rate (%)

MR I-MR MR I-MR MR I-MR
1 3482 2156 7.10 6.57 90.00 93.33
2 2619 2359 6.84 5.98 86.67 83.33
3 3162 2551 6.37 6.72 83.00 81.00

of around 5%. The reduction in number of expansions is
more significant and is around 23%. The higher reduction
in expansions vs runtime can be attributed to the extra time
spent in KD-Tree construction and KD-Tree search done at
every expansion step, which increases the runtime though
overall expansions are significantly less. In addition, we also
find that reduction in planning time is highly dependant on
CVAE output. If the CVAE output covers points that are
explored during the search and CVAE points go through
the narrow gaps, the runtime reduction is significantly high.
Infact, in our experiments, the maximum runtime reduction
we obtained across environments was greater than 90%. This
shows that this method can indeed reduce the search runtime
significantly provided the CVAE output is as per search
requirements. In our future work, we can improve the CVAE
output by showing it more environments, thus improving the
conditioning on gaps. In addition we can train the CVAE not
just on the final planner generated trajectory but in general
on the states that were ”good” expansions for base and arm
individually.

https://www.youtube.com/watch?v=1qIXPbPmPNw


V. VIDEO LINK

https://youtu.be/1qIXPbPmPNw

REFERENCES

[1] B. Ichter, J. Harrison, and M. Pavone, “Learning Sampling Distributions
for Robot Motion Planning,” Tech. Rep., 2018.

[2] D. Youakim, A. Dornbush, M. Likhachev, and P. Ridao, “Motion
Planning for an Underwater Mobile Manipulator by Exploiting Loose
Coupling,” Tech. Rep., 2018.

[3] N. Vahrenkamp, C. Scheurer, T. Asfour, J. Kuffner, and R. Dillmann,
“Adaptive motion planning for humanoid robots,” 2008 IEEE/RSJ
International Conference on Intelligent Robots and Systems, IROS, pp.
2127–2132, 2008.

[4] D. H. Kim, Y. S. Choi, T. Park, J. Y. Lee, and C. S. Han, “Efficient
path planning for high-DOF articulated robots with adaptive dimension-
ality,” Proceedings - IEEE International Conference on Robotics and
Automation, vol. 2015-June, no. June, pp. 2355–2360, 2015.

[5] K. Gochev, B. Cohen, J. Butzke, A. Safonova, and M. Likhachev,
“Path Planning with Adaptive Dimensionality,” Proceedings of the
International Symposium on Combinatorial Search (SoCS), pp. 52–59,
2011.

[6] M. Goldenberg, A. Felner, R. Stern, G. Sharon, N. Sturtevant,
R. C. Holte, and J. Schaeffer, “Enhanced partial expansion A*,”
Journal of Artificial Intelligence Research, vol. 50, no. 9, pp.
141–187, 2014. [Online]. Available: http://www.jair.org/media/4171/
live-4171-7932-jair.pdf

https://youtu.be/1qIXPbPmPNw
http://www.jair.org/media/4171/live-4171-7932-jair.pdf
http://www.jair.org/media/4171/live-4171-7932-jair.pdf

	INTRODUCTION
	RELATED WORK
	METHODOLOGY
	Planning Formulation
	CVAE Architecture
	CVAE Training
	CVAE Testing

	EXPERIMENTS
	Video Link
	References

